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ABSTRACT 9	  

 Drawdowns generated by extracting water from a large diameter (e.g. water supply) 10	  

well are affected by wellbore storage. We present an analytical solution in Laplace transformed 11	  

space for drawdown in a uniform anisotropic aquifer caused by withdrawing water at a constant 12	  

rate from a partially penetrating well with storage. The solution is back transformed into the 13	  

time domain numerically. When the pumping well is fully penetrating our solution reduces to 14	  

that of Papadopulos and Cooper [1967]; Hantush [1964] when the pumping well has no 15	  

wellbore storage; Theis [1935] when both conditions are fulfilled and Yang et.al. [2006] when 16	  

the pumping well is partially penetrating, has finite radius but lacks storage. We use our 17	  

solution to explore graphically the effects of partial penetration, wellbore storage and anisotropy 18	  

on time evolutions of drawdown in the pumping well and in observation wells.  19	  

 

 

 

 

 

 

 

 

 



INTRODUCTION 20	  

When water is pumped from a large diameter (e.g. water supply) well drawdown in the 21	  

surrounding aquifer is affected by temporal decline in wellbore storage. An analytical solution 22	  

accounting for this effect under radial flow toward a fully penetrating well of finite diameter 23	  

with storage was developed by Papadopulos and Cooper [1967]. A corresponding solution 24	  

without wellbore storage was presented earlier by van Everdingen and Hurst [1949] and later, 25	  

in elliptical coordinates, by Kucuk and Brigham [1979]. Mathias and Butler [2007] extended 26	  

the solution of Kucuk and Brigham [1979] by adding wellbore storage and horizontal 27	  

anisotropy. Their solution utilized Mathieu functions in Laplace transformed space and 28	  

numerical inversion of the result into the time domain. Yang et.al. [2006] extended the solution 29	  

of van Everdingen and Hurst [1949] by allowing the pumping well to be partially penetrating.  30	  

Dougherty and Babu [1984] developed an analytical solution for a pumping well with storage in 31	  

a confined double porosity reservoir. Their solution can be reduced to that for a single porosity 32	  

confined aquifer but ignores anisotropy. None of the available analytical solutions account 33	  

simultaneously for aquifer anisotropy, partial penetration and storage capacity of the pumping 34	  

well under confined aquifer conditions.  35	  

Moench [1997, 1998] developed an analytical solution for flow to a pumping well with 36	  

storage in a uniform anisotropic unconfined (water table) aquifer. We present a new solution for 37	  

radial flow to a partially penetrating well of finite diameter with storage in an anisotropic 38	  

confined aquifer. Whereas Moench [1997, 1998] used Fourier cosine series in Laplace 39	  

transformed space we employ Laplace transformation with respect to time followed by finite 40	  

cosine transformation with respect to vertical coordinates. Our solution reduces to that of 41	  

Papadopulos and Cooper [1967] when the pumping well is fully penetrating, Hantush [1964] in 42	  



the absence of wellbore storage, Theis [1935] when both conditions are fulfilled, and Yang et.al. 43	  

[2006] when the pumping well is partially penetrating, has finite radius but lacks storage. We 44	  

use our solution to explore graphically the effects of partial penetration, wellbore storage and 45	  

anisotropy on time evolutions of drawdown in the pumping well and in observation wells.  46	  
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Figure 1: Schematic representation of system geometry 48	  

THEORY 49	  

Problem Definition 50	  

Consider a well of finite radius wr  that is in hydraulic contact with a surrounding 51	  

confined aquifer at depths d  through l  below the top (Figure 1). The aquifer is horizontal and 52	  

of infinite lateral extent with uniform thickness b, uniform hydraulic properties and anisotropy 53	  

ratio /D z rK K K=  between vertical and horizontal hydraulic conductivities, zK  and rK , 54	  

respectively. Initially, drawdown ( , , )s r z t  throughout the aquifer is zero where r  is radial 55	  

distance from the axis of the well, z  is depth below the top of the aquifer and t is time. Starting 56	  



at time 0t =  water is withdrawn from the pumping well at a constant volumetric rate Q. 57	  

Consider the bottom of the well to be impermeable and ignore flow beneath it. Then drawdown 58	  

distribution in space-time is controlled by 59	  
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where wC  is wellbore storage coefficient (volume of water released from well storage per unit 67	  

drawdown in it). 68	  

Solution in Laplace Space 69	  

We show in Appendix A that the Laplace transform of the solution, indicated by an 70	  

overbar, is given by  71	  
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where /Dr r b= , /Dz z b= , Dp pt= , /wD wr r r= , ( )2/wD w s wC C S rπ= , /Dd d b= , /Dl l b= , 73	  

2 2 2/n D sp t nφ β π= + , 2/s st t rα= , /s r sK Sα =  and 1/ 2
D Dr Kβ = , 0K  and 1K  being modified 74	  

Bessel functions of second kind and order zero and one, respectively. A corresponding solution 75	  

in the time domain	   ( ), ,D D Ds r z p , is obtained through numerical inversion of the Laplace 76	  

transform by means of an algorithm due to Crump [1976] as modified by de Hoog et. al. [1982]. 77	  

Whereas standard inversion with respect to p is done over a time interval [0,t] , we do the 78	  

inversion with respect to Dp  over a unit dimensionless time (corresponding to 
1

Dp
− ) interval 79	  

[0,1], regardless of what st  is. 80	  

Vertically Averaged Drawdown 81	  

Drawdown in a piezometer or observation well that penetrates the aquifer between 82	  

dimensionless depths 1 1 /Dz z b=  and 2 2 /Dz z b=  at a dimensionless radial distance Dr  from the 83	  

pumping well (Figure 1) is obtained by averaging the point drawdown over this interval 84	  

according to  85	  
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(7) 87	  



Substituting (6) into (7) and evaluating the integral gives 88	  
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Reduction to Solution of Papadopoulos and Cooper [1967] 90	  

When the pumping well is fully penetrating 1Dl = , 0Dd =  and (6) reduces to the 91	  

corresponding Laplace domain solution of Papadopoulos and Cooper  [1967], 92	  
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 (9) 93	  

Reduction to Solution’s of Yang et.al. [2006], Hantush [1964] and Theis [1935]  94	  

When the pumping well has finite diameter ( )0wr ≠  but negligible or no wellbore 95	  

storage ( )0wDC → , (6) reduces to the solution of Yang et. al. [2006] in Laplace space, 96	  
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   (10) 97	  

When the pumping well has small diameter ( )0wr → , (6) reduces to Hantush’s [1964] 98	  

solution in Laplace space due to the fact that 1( ) 1xK x →  and 2
0 ( ) 0x K x →  as 0x→ , 99	  
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101	  

It is well established and easily verified that the latter in turn reduces to the Theis [1935] 102	  

solution in Laplace space when the pumping well becomes fully penetrating ( )0, 1D Dd l= = , 103	  
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                                    (12) 104	  

3. RESULTS AND DISCUSSION 105	  

To investigate the effect of partial penetration, wellbore storage and anisotropy on 106	  

drawdown we consider a pumping well of dimensionless radius / 0.02wr b = .  107	  

Drawdown in pumping well 108	  

We start by considering drawdown in a pumping well penetrating the upper half 109	  

( 0.0, 0.5D Dd l= = ) of an isotropic aquifer with 1.0DK = . Figure 2 compares the variation of 110	  

dimensionless drawdown ( ) ( ) ( ), , 4 / , ,D D D s r D D ss r z t K b Q s r z tπ=  in the pumping well with 111	  

dimensionless time st  using different analytical solutions when 21.0 10wDC = × . At early time 112	  

water is derived entirely from wellbore storage, rendering dimensionless drawdown linearly 113	  

proportional to dimensionless time (forming a line with unit slope on log-log scale); our 114	  

solution and that of Papadopulos and Cooper [1967] reflect this clearly. Solutions that do not 115	  

account for wellbore storage predict a much earlier rise in drawdown. Whereas the Papadopulos 116	  

and Cooper [1967] solution approaches that of Theis [1935] at later dimensionless time, ours 117	  

approaches that of Hantush [1964] as the effects of finite radius and wellbore storage dissipate. 118	  

The solution of Yang et al. [2006], which considers only the first effect, exhibits an earlier rise 119	  



in dimensionless drawdown than do any of the other solutions, eventually coinciding with that 120	  

of Hantush [1964]. Dimensionless drawdown in the pumping well at late dimensionless time 121	  

exceeds that predicted by solutions which ignore partial penetration.	  122	  

Dimensionless Time ( ts)

D
im
en
sio
nl
es
sD
ra
w
do
w
n
(s
D
)

10-2 10-1 100 101 102 103 10410-3

10-2

10-1

100

101

102

Hantush [1964]
Yang et. al. [2006]
Papadopulos & Cooper [1967]
Theis [1935]
Proposed solution

 123	  

Figure 2: Dimensionless drawdown in pumping well versus dimensionless time, computed by 124	  

various analytical solutions when 21.0 10wDC = × , 0.0Dd = , 0.5Dl =  and 1.0.DK =  125	  
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Figure 3: Dimensionless drawdown in pumping well versus dimensionless time for various 127	  

values of dimensionless wellbore storage wDC  when 0.0Dd = , 0.5Dl =  and 1.0DK =  . 128	  

Figure 3 shows how dimensionless drawdown in the pumping well varies with 129	  

dimensionless time st  for different values of the dimensionless wellbore storage coefficient, 130	  

wDC . As with the solution of Papadopulos and Cooper [1967], the larger is wDC  the longer does 131	  

wellbore storage impact drawdown in the pumping well. As wDC  diminishes our solution 132	  

approaches that of Yang et.al [2006]. 133	  
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Figure 4: Dimensionless drawdown at 0.5Dz =  and 0.2Dr =  versus dimensionless time for 135	  

various values of dimensionless wellbore storage wDC  when 0.5Dl =  and 1.0DK = . 136	  

Drawdown in piezometer 137	  

Figure 4 shows dimensionless time-drawdown variations at dimensionless radial 138	  

distance 0.2Dr =  from the axis of the pumping well and dimensionless elevation 0.5Dz =  139	  

(midway between the horizontal no-flow boundaries) for different values of wDC  under the 140	  

above conditions. When wDC  is large, the early dimensionless time-drawdown curve on log-log 141	  

scale is nearly linear with a unit slope, reflecting a strong effect of storage in the pumping well 142	  

on early drawdown in a nearby piezometer. As wDC  diminishes this effect becomes less 143	  

discernible, the curve becoming nonlinear and steeper. The curve tends asymptotically toward 144	  

the solution of Yang et al. [2006], which in turn is very close to that of Hantush [1964] due to 145	  

the small dimensionless radius we have assigned to the pumping well in our example.  146	  
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Figure 5:  Dimensionless drawdown at 0.5Dz =  and 0.2Dr =  versus dimensionless time for 148	  

various screen lengths Dl  when 21.0 10wDC = × , 0Dd =  and 1.0DK = . 149	  

Figure 5, corresponding to the case where 21.0 10wDC = × , shows that dimensionless 150	  

drawdown at 0.2Dr =  and 0.5Dz =  increases when the pumping well is extended to the aquifer 151	  

bottom ( 0.0, 1.0D Dd l= =  below the observation point) but decreases when this well becomes 152	  

shallower; a similar trend is reflected in the solution of Hantush [1964]. Reducing the ratio DK  153	  

between vertical and horizontal hydraulic conductivity in the case of a well that is shallower 154	  

than the observation point ( 0.0, 0.25D Dd l= = ) likewise causes dimensionless drawdown at this 155	  

point to diminish (Figure 6). 156	  
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Figure 6:  Dimensionless drawdown at 0.5Dz =  and 0.2Dr =  versus dimensionless time for 158	  

various anisotropy ratios /D z rK K K= when 21.0 10wDC = × , 0.0Dd = and 0.25.Dl =  159	  

Figure 7 illustrates the impact of dimensionless radial distance from the pumping well 160	  

on dimensionless time-drawdown at 0.5Dz =  when 0.0Dd = , 0.25Dl = , 1DK =  and 161	  

21.0 10wDC = × . As this distance increases the effects of both wellbore storage and partial 162	  

penetration diminish, the dimensionless time-drawdown response in the aquifer approaching 163	  

that predicted by Theis [1935].  164	  

4. SUMMARY AND CONCLUSION 165	  

 A new analytical solution has been developed for a partially penetrating well of finite 166	  

diameter with storage pumping at a constant rate from an anisotropic confined aquifer. Our 167	  

solution unifies the solutions of Papadopulos and Cooper [1967], Hantush [1964], Theis 168	  



[1935] and Yang et.al. [2006] by accounting simultaneously for aquifer anisotropy, partial 169	  

penetration and wellbore storage capacity of the pumping well under confined conditions. We 170	  

used our solution to explore all three effects. Reducing the anisotropy ratio /D z rK K K=  171	  

causes drawdown in the aquifer to decrease. Whereas the effect of partial penetration decreases 172	  

with increasing distance from the pumping well, that of wellbore storage diminishes with 173	  

distance and time. 174	  
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Figure 7: Dimensionless drawdown versus dimensionless time at 0.5Dz =  and various values 176	  

of /Dr r b=  when 31.0 10wDC = × , 0.0Dd = , 0.25Dl =  and 1.0DK = . 177	  

Appendix A: Laplace transformed drawdown 178	  

 Introducing a new variable ( )1/2 1/2/z r Dr r K K rKʹ′ = =  and taking Laplace transform of (1) 179	  

– (5) gives 180	  
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Defining the finite cosine transform of ( ), ,s r z pʹ′  as (Churchill, 1958, p.354-355)  190	  
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Hence finite cosine transformation of (A1) – (A5) leads to    197	  
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 The general solution of (A8) is  202	  
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/ /n
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π π

π π→
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− = −⎢ ⎥
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. (A13) 209	  

This allows obtaining the inverse Fourier cosine transform of (A12), 210	  
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∑

 .       (A14) 211	  

Recalling that 1/2
Dr rKʹ′ = and rewriting (A14) in dimensionless form yields (6). 212	  
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